|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object yawn.nn.NeuralNetwork yawn.nn.appart.AppArt
public class AppArt
This class implements the AppART neural network. See:
Martí, L., Policriti, A. & García, L. (2003). Hybrid Adaptive Resonance Theory Neural Networks for Universal Function Approximation. In Abraham, A. and Jain, L. (eds.), Innovations in Intelligent Systems and Applications, Studies in Fuzziness and Soft Computing Series. Heidelberg: Physica (Springer) Verlag.
Field Summary | |
---|---|
protected double |
desiredMeanSquaredError
|
protected GainControlUnitOnMatching |
f2GainControl
|
protected RecognitionLayer |
f2Layer
|
protected Pattern |
initialDeviations
|
protected InputLayer |
inputLayer
|
protected double |
learningRate
|
protected boolean |
matchTrackingOneShot
|
protected long |
maxEpochs
|
protected GainControlUnitOnOutput |
outputGainControl
|
protected OutputLayer |
outputLayer
|
protected double |
predictionError
|
protected PredictionLayer |
predictionLayer
|
protected double |
predictionLayerLearningRate
|
protected double |
testMatchVigilance
|
protected double |
trainMatchVigilance
|
protected boolean |
useAbsoluteError
|
Constructor Summary | |
---|---|
AppArt()
|
Method Summary | |
---|---|
protected void |
computeError(Pattern prediction,
Pattern expected)
|
protected void |
doBackTrack()
|
protected void |
doMatchTracking()
|
double |
getDesiredMeanSquaredError()
|
RecognitionLayer |
getF2Layer()
|
Pattern |
getInitialDeviations()
|
int |
getInputSize()
|
double |
getLearningRate()
|
long |
getMaxEpochs()
|
java.lang.String |
getNeuralNetworkName()
Returns a human readable |
int |
getOutputSize()
|
double |
getPredictionError()
|
PredictionLayer |
getPredictionLayer()
|
double |
getPredictionLayerLearningRate()
|
double |
getTestMatchVigilance()
|
double |
getTrainMatchVigilance()
|
protected void |
init()
|
boolean |
isMatchTrackingOneShot()
|
boolean |
isUseAbsoluteError()
|
protected void |
learn(Pattern pat)
|
protected Pattern |
learnNewCategory(Pattern output)
|
protected int |
numberOfF2Nodes()
|
void |
oneLearningStep(Pattern input,
Pattern output)
Performs one learning iteration. |
Pattern |
predict(Pattern input)
Computes a network prediction |
protected Pattern |
propagate(Pattern output)
Propagates the input already already presented to the network (by calling setInput()) |
protected void |
reset()
|
void |
setAdapting(boolean adapt)
If set to true puts the network in adapting (training)
mode; false puts the network in static or frozen (testing)
mode. |
void |
setDesiredMeanSquaredError(double desiredMeanSquaredError)
|
void |
setF2GainControl(GainControlUnitOnMatching gf2)
|
void |
setF2Layer(RecognitionLayer f2)
|
void |
setInitialDeviations(Pattern initialDeviations)
|
void |
setInput(Pattern input)
|
void |
setLearningRate(double learningRate)
|
void |
setMatchTrackingOneShot(boolean matchTrackingOneShot)
|
void |
setMaxEpochs(long maxEpochs)
|
void |
setPredictionError(double predictionError)
|
void |
setPredictionLayer(PredictionLayer predictionLayer)
|
void |
setPredictionLayerLearningRate(double predictionLayerLearningRate)
|
void |
setTestMatchVigilance(double testMatchVigilance)
|
void |
setTrainMatchVigilance(double trainMatchVigilance)
|
void |
setup(NeuralNetworkConfig config)
|
void |
setUseAbsoluteError(boolean error)
|
void |
setUseRelativeError(boolean error)
|
void |
train(InputOutputPattern[] iop)
Trains the network until the stop criteria is met. |
void |
useMinimumActivationMatchTracking(boolean use)
|
void |
useOneShotMatchTracking(boolean use)
|
NeuralNetworkConfig |
yieldConfiguration()
(non-Javadoc) |
Methods inherited from class yawn.nn.NeuralNetwork |
---|
getAdapting, getStatisticsFacility, isAdapting, setStatisticsFacility |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Field Detail |
---|
protected GainControlUnitOnMatching f2GainControl
protected RecognitionLayer f2Layer
protected Pattern initialDeviations
protected InputLayer inputLayer
protected double learningRate
protected boolean matchTrackingOneShot
protected long maxEpochs
protected GainControlUnitOnOutput outputGainControl
protected OutputLayer outputLayer
protected double predictionError
protected PredictionLayer predictionLayer
protected double predictionLayerLearningRate
protected double testMatchVigilance
protected double trainMatchVigilance
protected boolean useAbsoluteError
protected double desiredMeanSquaredError
Constructor Detail |
---|
public AppArt()
Method Detail |
---|
protected void computeError(Pattern prediction, Pattern expected)
protected void doBackTrack()
protected void doMatchTracking()
public RecognitionLayer getF2Layer()
public Pattern getInitialDeviations()
public int getInputSize()
getInputSize
in class NeuralNetwork
public double getLearningRate()
public long getMaxEpochs()
public java.lang.String getNeuralNetworkName()
NeuralNetwork
getNeuralNetworkName
in class NeuralNetwork
NeuralNetwork.getNeuralNetworkName()
public int getOutputSize()
getOutputSize
in class NeuralNetwork
public double getPredictionError()
public PredictionLayer getPredictionLayer()
public double getPredictionLayerLearningRate()
public double getTestMatchVigilance()
public double getTrainMatchVigilance()
protected void init()
public boolean isMatchTrackingOneShot()
public boolean isUseAbsoluteError()
protected void learn(Pattern pat)
protected Pattern learnNewCategory(Pattern output)
protected int numberOfF2Nodes()
public void oneLearningStep(Pattern input, Pattern output)
NeuralNetwork
oneLearningStep
in class NeuralNetwork
input
- The network input.output
- The desired output.public Pattern predict(Pattern input)
NeuralNetwork
predict
in class NeuralNetwork
input
- The input to propagate.
protected Pattern propagate(Pattern output)
protected void reset()
public void setAdapting(boolean adapt)
NeuralNetwork
true
puts the network in adapting (training)
mode; false
puts the network in static or frozen (testing)
mode.
setAdapting
in class NeuralNetwork
public void setF2GainControl(GainControlUnitOnMatching gf2)
gf2
- the f2GainControl to set.public void setF2Layer(RecognitionLayer f2)
f2
- The f2Layer to set.public void setInitialDeviations(Pattern initialDeviations)
initialDeviations
- The initialDeviations to set.public void setInput(Pattern input)
public void setLearningRate(double learningRate)
public void setMatchTrackingOneShot(boolean matchTrackingOneShot)
matchTrackingOneShot
- The matchTrackingOneShot to set.public void setMaxEpochs(long maxEpochs)
maxEpochs
- The maxEpochs to set.public void setPredictionError(double predictionError)
predictionError
- The predictionError to set.public void setPredictionLayer(PredictionLayer predictionLayer)
predictionLayer
- the predictionLayer to setpublic void setPredictionLayerLearningRate(double predictionLayerLearningRate)
predictionLayerLearningRate
- The predictionLayerLearningRate to set.public void setTestMatchVigilance(double testMatchVigilance)
testMatchVigilance
- The testMatchVigilance to set.public void setTrainMatchVigilance(double trainMatchVigilance)
trainMatchVigilance
- The trainMatchVigilance to set.public void setup(NeuralNetworkConfig config) throws ConfigurationException
setup
in class NeuralNetwork
ConfigurationException
public void setUseAbsoluteError(boolean error)
public void setUseRelativeError(boolean error)
public void train(InputOutputPattern[] iop)
NeuralNetwork
train
in class NeuralNetwork
iop
- The training set to be learned.public void useMinimumActivationMatchTracking(boolean use)
public void useOneShotMatchTracking(boolean use)
public NeuralNetworkConfig yieldConfiguration()
yieldConfiguration
in class NeuralNetwork
NeuralNetwork.yieldConfiguration()
public double getDesiredMeanSquaredError()
public void setDesiredMeanSquaredError(double desiredMeanSquaredError)
desiredMeanSquaredError
- The desiredMeanSquaredError to set.
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |