yawn.nn.appart
Class RadialBasisFunctionsNeuralNode
java.lang.Object
yawn.nn.NeuralNode
yawn.nn.appart.RadialBasisFunctionsNeuralNode
- Direct Known Subclasses:
- GasRecognitionNode
public class RadialBasisFunctionsNeuralNode
- extends NeuralNode
A classifier (extended RBF) node intended for the recognition (F2) layer of a
AppART network.
$Id: RadialBasisFunctionsNeuralNode.java,v 1.7 2005/03/24 17:59:53 supermarti
Exp $
- Version:
- $Revision: 1.8 $
- Author:
- Luis Martí (luis dot marti at uc3m dot es)
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
categoryIndex
protected int categoryIndex
eta
protected double eta
lambda
protected Pattern lambda
mu
protected Pattern mu
sigma
protected Pattern sigma
threshold
protected double threshold
- holds the vigilance parameter specified in GF2
RadialBasisFunctionsNeuralNode
public RadialBasisFunctionsNeuralNode(int inputSize,
double aThreshold,
int aCategoryIndex)
- Parameters:
inputSize
- aThreshold
- aCategoryIndex
-
activationFunction
protected double activationFunction(Pattern input)
- Specified by:
activationFunction
in class NeuralNode
- See Also:
NeuralNode.activationFunction(yawn.util.Pattern)
bigG
public double bigG()
bigG
protected double bigG(Pattern input)
deviationsProduct
public double deviationsProduct()
getCategoryIndex
public int getCategoryIndex()
- Returns:
- the index of this category node
getEta
public double getEta()
- Returns:
- the vakue of eta
getInputSize
public int getInputSize()
- Overrides:
getInputSize
in class NeuralNode
- See Also:
NeuralNode.getInputSize()
getLambda
public Pattern getLambda()
- Returns:
- the value
getMu
public Pattern getMu()
- Returns:
- the value
getSigma
public Pattern getSigma()
- Returns:
- the value
getThreshold
public double getThreshold()
- Returns:
- the threshold value
learn
public void learn(double v)
learnNewClass
public void learnNewClass(Pattern gamma,
int n)
- Sets up the node to exactly represents the class specified by the current
input. This is used when committing a node.
- Parameters:
gamma,
- initial standard deviationsn,
- index of the class being learned
netInput
public double netInput()
netInput
protected double netInput(Pattern input)
setCategoryIndex
public void setCategoryIndex(int categoryIndex)
- Parameters:
categoryIndex
-
setEta
public void setEta(double eta)
- Parameters:
eta
-
setLambda
public void setLambda(Pattern lambda)
- Parameters:
lambda
-
setMu
public void setMu(Pattern mu)
- Parameters:
mu
-
setSigma
public void setSigma(Pattern sigma)
- Parameters:
sigma
-
setThreshold
public void setThreshold(double threshold)
- Parameters:
threshold
-
Copyright © 2003-2005 GIAA, Universidad Carlos III de Madrid. All Rights Reserved.