yawn.nn.appart
Class RadialBasisFunctionsNeuralNode

java.lang.Object
  extended by yawn.nn.NeuralNode
      extended by yawn.nn.appart.RadialBasisFunctionsNeuralNode
Direct Known Subclasses:
GasRecognitionNode

public class RadialBasisFunctionsNeuralNode
extends NeuralNode

A classifier (extended RBF) node intended for the recognition (F2) layer of a AppART network. $Id: RadialBasisFunctionsNeuralNode.java,v 1.7 2005/03/24 17:59:53 supermarti Exp $

Version:
$Revision: 1.8 $
Author:
Luis Martí (luis dot marti at uc3m dot es)

Field Summary
protected  int categoryIndex
           
protected  double eta
           
protected  Pattern lambda
           
protected  Pattern mu
           
protected  Pattern sigma
           
protected  double threshold
          holds the vigilance parameter specified in GF2
 
Fields inherited from class yawn.nn.NeuralNode
input, inputSize
 
Constructor Summary
RadialBasisFunctionsNeuralNode(int inputSize, double aThreshold, int aCategoryIndex)
           
 
Method Summary
protected  double activationFunction(Pattern input)
           
 double bigG()
           
protected  double bigG(Pattern input)
           
 double deviationsProduct()
           
 int getCategoryIndex()
           
 double getEta()
           
 int getInputSize()
           
 Pattern getLambda()
           
 Pattern getMu()
           
 Pattern getSigma()
           
 double getThreshold()
           
 void learn(double v)
           
 void learnNewClass(Pattern gamma, int n)
          Sets up the node to exactly represents the class specified by the current input.
 double netInput()
           
protected  double netInput(Pattern input)
           
 void setCategoryIndex(int categoryIndex)
           
 void setEta(double eta)
           
 void setLambda(Pattern lambda)
           
 void setMu(Pattern mu)
           
 void setSigma(Pattern sigma)
           
 void setThreshold(double threshold)
           
 
Methods inherited from class yawn.nn.NeuralNode
output, reset, setInput, setInputElement, setInputSize
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Field Detail

categoryIndex

protected int categoryIndex

eta

protected double eta

lambda

protected Pattern lambda

mu

protected Pattern mu

sigma

protected Pattern sigma

threshold

protected double threshold
holds the vigilance parameter specified in GF2

Constructor Detail

RadialBasisFunctionsNeuralNode

public RadialBasisFunctionsNeuralNode(int inputSize,
                                      double aThreshold,
                                      int aCategoryIndex)
Parameters:
inputSize -
aThreshold -
aCategoryIndex -
Method Detail

activationFunction

protected double activationFunction(Pattern input)
Specified by:
activationFunction in class NeuralNode
See Also:
NeuralNode.activationFunction(yawn.util.Pattern)

bigG

public double bigG()

bigG

protected double bigG(Pattern input)

deviationsProduct

public double deviationsProduct()

getCategoryIndex

public int getCategoryIndex()
Returns:
the index of this category node

getEta

public double getEta()
Returns:
the vakue of eta

getInputSize

public int getInputSize()
Overrides:
getInputSize in class NeuralNode
See Also:
NeuralNode.getInputSize()

getLambda

public Pattern getLambda()
Returns:
the value

getMu

public Pattern getMu()
Returns:
the value

getSigma

public Pattern getSigma()
Returns:
the value

getThreshold

public double getThreshold()
Returns:
the threshold value

learn

public void learn(double v)

learnNewClass

public void learnNewClass(Pattern gamma,
                          int n)
Sets up the node to exactly represents the class specified by the current input. This is used when committing a node.

Parameters:
gamma, - initial standard deviations
n, - index of the class being learned

netInput

public double netInput()

netInput

protected double netInput(Pattern input)

setCategoryIndex

public void setCategoryIndex(int categoryIndex)
Parameters:
categoryIndex -

setEta

public void setEta(double eta)
Parameters:
eta -

setLambda

public void setLambda(Pattern lambda)
Parameters:
lambda -

setMu

public void setMu(Pattern mu)
Parameters:
mu -

setSigma

public void setSigma(Pattern sigma)
Parameters:
sigma -

setThreshold

public void setThreshold(double threshold)
Parameters:
threshold -


Copyright © 2003-2005 GIAA, Universidad Carlos III de Madrid. All Rights Reserved.