|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Uses of Pattern in yawn.envs |
---|
Methods in yawn.envs that return Pattern | |
---|---|
abstract Pattern[] |
Environment.getTestDatasetInputs(int runNumber)
Reads a test dataset from the environment. |
Methods in yawn.envs with parameters of type Pattern | |
---|---|
abstract void |
Environment.writeResults(Pattern[] results,
int runNumber)
|
Uses of Pattern in yawn.envs.delve |
---|
Methods in yawn.envs.delve that return Pattern | |
---|---|
Pattern[] |
DelveEnvironment.getTestDatasetInputs(int runNumber)
Reads a test data file from a DELVE directory. |
Methods in yawn.envs.delve with parameters of type Pattern | |
---|---|
void |
DelveEnvironment.writeResults(Pattern[] results,
int runNumber)
Writes a DELVE cguess file representing the predictions of a neural network. |
Uses of Pattern in yawn.envs.plaintext |
---|
Methods in yawn.envs.plaintext that return Pattern | |
---|---|
Pattern[] |
PlainTextEnvironment.getTestDatasetInputs(int runNumber)
|
Methods in yawn.envs.plaintext with parameters of type Pattern | |
---|---|
void |
PlainTextEnvironment.writeResults(Pattern[] results,
int runNumber)
Writes the results to a an ascii file. |
Uses of Pattern in yawn.envs.synthetic |
---|
Fields in yawn.envs.synthetic declared as Pattern | |
---|---|
protected Pattern |
CircleInTheSquareEnvironment.center
|
Methods in yawn.envs.synthetic that return Pattern | |
---|---|
protected Pattern |
XOrDataEnvironment.generateRandomInput()
|
protected abstract Pattern |
SyntheticDataEnvironment.generateRandomInput()
|
protected Pattern |
CircleInTheSquareEnvironment.generateRandomInput()
|
Pattern[] |
SyntheticDataEnvironment.getTestDatasetInputs(int runNumber)
|
Pattern[] |
SyntheticDataEnvironment.getTestExpectedOutputsSet(int runNumber)
|
protected Pattern |
XOrDataEnvironment.synthetizeOutput(Pattern input)
(non-Javadoc) |
protected abstract Pattern |
SyntheticDataEnvironment.synthetizeOutput(Pattern input)
|
protected Pattern |
CircleInTheSquareEnvironment.synthetizeOutput(Pattern input)
|
Methods in yawn.envs.synthetic with parameters of type Pattern | |
---|---|
protected Pattern |
XOrDataEnvironment.synthetizeOutput(Pattern input)
(non-Javadoc) |
protected abstract Pattern |
SyntheticDataEnvironment.synthetizeOutput(Pattern input)
|
protected Pattern |
CircleInTheSquareEnvironment.synthetizeOutput(Pattern input)
|
void |
SyntheticDataEnvironment.writeResults(Pattern[] results,
int runNumber)
|
Uses of Pattern in yawn.nn |
---|
Fields in yawn.nn declared as Pattern | |
---|---|
protected Pattern |
NeuralNode.input
|
protected Pattern |
InputLayer.input
|
Methods in yawn.nn that return Pattern | |
---|---|
protected Pattern |
Layer.getActivations()
|
protected Pattern |
InputLayer.getActivations()
|
Pattern |
Layer.output()
|
abstract Pattern |
NeuralNetwork.predict(Pattern input)
Computes a network prediction |
Methods in yawn.nn with parameters of type Pattern | |
---|---|
protected abstract double |
NeuralNode.activationFunction(Pattern input)
|
abstract void |
NeuralNetwork.oneLearningStep(Pattern input,
Pattern output)
Performs one learning iteration. |
abstract Pattern |
NeuralNetwork.predict(Pattern input)
Computes a network prediction |
void |
NeuralNode.setInput(Pattern val)
sets the current input of the node |
void |
Layer.setInput(Pattern input)
|
void |
InputLayer.setInput(Pattern p)
|
Uses of Pattern in yawn.nn.appart |
---|
Fields in yawn.nn.appart declared as Pattern | |
---|---|
protected Pattern |
AppArtConfig.initialDeviations
|
protected Pattern |
AppArt.initialDeviations
|
protected Pattern |
RadialBasisFunctionsNeuralNode.lambda
|
protected Pattern |
RadialBasisFunctionsNeuralNode.mu
|
protected Pattern |
RecognitionLayer.normalizedActivations
|
protected Pattern |
RadialBasisFunctionsNeuralNode.sigma
|
protected Pattern |
PredictionNeuralNode.weights
|
Methods in yawn.nn.appart that return Pattern | |
---|---|
Pattern |
AppArtConfig.getInitialDeviations()
|
Pattern |
AppArt.getInitialDeviations()
|
Pattern |
RadialBasisFunctionsNeuralNode.getLambda()
|
Pattern |
RadialBasisFunctionsNeuralNode.getMu()
|
Pattern |
RecognitionLayer.getNormalizedActivations()
|
Pattern |
RadialBasisFunctionsNeuralNode.getSigma()
|
Pattern |
PredictionNeuralNode.getWeights()
|
protected Pattern |
AppArt.learnNewCategory(Pattern output)
|
Pattern |
AppArt.predict(Pattern input)
|
protected Pattern |
AppArt.propagate(Pattern output)
Propagates the input already already presented to the network (by calling setInput()) |
Methods in yawn.nn.appart with parameters of type Pattern | |
---|---|
protected double |
RadialBasisFunctionsNeuralNode.activationFunction(Pattern input)
|
protected double |
PredictionNeuralNode.activationFunction(Pattern input)
|
protected double |
RadialBasisFunctionsNeuralNode.bigG(Pattern input)
|
void |
GainControlUnitOnOutput.calculateAbsoluteError(Pattern o,
Pattern y)
|
void |
GainControlUnitOnOutput.calculateRelativeError(Pattern o,
Pattern y)
|
protected void |
AppArt.computeError(Pattern prediction,
Pattern expected)
|
void |
PredictionLayer.learn(Pattern y)
|
protected void |
AppArt.learn(Pattern pat)
|
protected Pattern |
AppArt.learnNewCategory(Pattern output)
|
void |
RadialBasisFunctionsNeuralNode.learnNewClass(Pattern gamma,
int n)
Sets up the node to exactly represents the class specified by the current input. |
protected double |
RadialBasisFunctionsNeuralNode.netInput(Pattern input)
|
void |
AppArt.oneLearningStep(Pattern input,
Pattern output)
|
Pattern |
AppArt.predict(Pattern input)
|
protected Pattern |
AppArt.propagate(Pattern output)
Propagates the input already already presented to the network (by calling setInput()) |
void |
AppArtConfig.setInitialDeviations(Pattern initialDeviations)
|
void |
AppArt.setInitialDeviations(Pattern initialDeviations)
|
void |
RecognitionLayer.setInput(Pattern input)
|
void |
PredictionLayer.setInput(Pattern input)
|
void |
AppArt.setInput(Pattern input)
|
void |
RadialBasisFunctionsNeuralNode.setLambda(Pattern lambda)
|
void |
RadialBasisFunctionsNeuralNode.setMu(Pattern mu)
|
void |
RadialBasisFunctionsNeuralNode.setSigma(Pattern sigma)
|
void |
PredictionNeuralNode.setWeights(Pattern weights)
|
void |
PredictionLayer.updateWeightsStructure(Pattern y)
|
Uses of Pattern in yawn.nn.committee |
---|
Methods in yawn.nn.committee that return Pattern | |
---|---|
Pattern |
NetworkCommittee.predict(Pattern input)
|
Methods in yawn.nn.committee with parameters of type Pattern | |
---|---|
void |
NetworkCommittee.oneLearningStep(Pattern input,
Pattern output)
this has no sense in this context, throws an UnsupportedOperationException by default. |
Pattern |
NetworkCommittee.predict(Pattern input)
|
Uses of Pattern in yawn.nn.committee.functions |
---|
Methods in yawn.nn.committee.functions that return Pattern | |
---|---|
Pattern |
Popularity.assamble(Pattern[] x)
|
Pattern |
CommitteeFunction.assamble(Pattern[] x)
Builds a committe response from an array of outputs. |
Methods in yawn.nn.committee.functions with parameters of type Pattern | |
---|---|
Pattern |
Popularity.assamble(Pattern[] x)
|
Pattern |
CommitteeFunction.assamble(Pattern[] x)
Builds a committe response from an array of outputs. |
Uses of Pattern in yawn.nn.fuzzyartmap |
---|
Methods in yawn.nn.fuzzyartmap that return Pattern | |
---|---|
protected Pattern |
FuzzyArtMap.bThenAActivation(Pattern input,
Pattern output)
Activates ARTb before ARTa, this kind of activation avoids the ``match tracking anomaly'' reported in |
Pattern |
FuzzyArtMap.deScaleZeroOneOutput(Pattern pat)
|
Pattern |
FuzzyArtMap.predict(Pattern input)
|
Pattern |
FuzzyArtMap.scaleZeroOneInput(Pattern pat)
|
Methods in yawn.nn.fuzzyartmap with parameters of type Pattern | |
---|---|
protected Pattern |
FuzzyArtMap.bThenAActivation(Pattern input,
Pattern output)
Activates ARTb before ARTa, this kind of activation avoids the ``match tracking anomaly'' reported in |
Pattern |
FuzzyArtMap.deScaleZeroOneOutput(Pattern pat)
|
void |
FuzzyArtMap.oneLearningStep(Pattern input,
Pattern output)
|
Pattern |
FuzzyArtMap.predict(Pattern input)
|
Pattern |
FuzzyArtMap.scaleZeroOneInput(Pattern pat)
|
Uses of Pattern in yawn.nn.gasart |
---|
Fields in yawn.nn.gasart declared as Pattern | |
---|---|
protected Pattern |
GasRecognitionNode.defaultSigma
|
Methods in yawn.nn.gasart that return Pattern | |
---|---|
Pattern |
GasArt.learnNewCategory(Pattern p)
|
Pattern |
GasRecognitionNode.position()
|
Methods in yawn.nn.gasart with parameters of type Pattern | |
---|---|
protected double |
GasRecognitionNode.activationFuntion(Pattern input)
|
void |
GasArt.learn(Pattern p)
|
Pattern |
GasArt.learnNewCategory(Pattern p)
|
void |
GasRecognitionNode.learnNewClass(Pattern gamma,
int n)
|
GasRecognitionNode |
GasArt.makeFstSndBMUConexion(Pattern p)
|
Uses of Pattern in yawn.nn.mlp |
---|
Fields in yawn.nn.mlp declared as Pattern | |
---|---|
protected Pattern |
PerceptronNode.momentum
|
protected Pattern |
PerceptronNode.weights
|
Methods in yawn.nn.mlp that return Pattern | |
---|---|
Pattern |
MLPLayer.calculateDeltasAsHiddenLayer(Pattern nextLayerDeltas)
|
Pattern |
MLPLayer.calculateDeltasAsOutputLayer(Pattern expectedOutputs)
|
Pattern |
PerceptronNode.getWeights()
|
Pattern |
MultiLayerPerceptron.predict(Pattern input)
|
Methods in yawn.nn.mlp with parameters of type Pattern | |
---|---|
protected double |
PerceptronNode.activationFunction(Pattern input)
|
void |
MLPLayer.adapt(Pattern deltas,
double learningRate,
double momentumRate)
|
Pattern |
MLPLayer.calculateDeltasAsHiddenLayer(Pattern nextLayerDeltas)
|
Pattern |
MLPLayer.calculateDeltasAsOutputLayer(Pattern expectedOutputs)
|
double |
PerceptronNode.calculateHiddenLayerDelta(Pattern nextLayerDeltas,
Pattern nextLayerWeights)
Calculate the deltas using the subsequent layer deltas and the weights emmanent from this node. |
void |
MultiLayerPerceptron.oneLearningStep(Pattern input,
Pattern output)
Implements a learning iteration as: propagates the input storing the activation of all nodes; sums in errorSum the mean square error of the
prediction;
calculation of the deltas;
backpropagation of errors, and;
weights update.
|
Pattern |
MultiLayerPerceptron.predict(Pattern input)
|
void |
MLPLayer.setInput(Pattern input)
Does the `threshold as weight' trick. |
void |
PerceptronNode.setWeights(Pattern weights)
|
Uses of Pattern in yawn.nn.mlp.smart |
---|
Methods in yawn.nn.mlp.smart that return Pattern | |
---|---|
Pattern |
SmartMultiLayerPerceptron.predict(Pattern input)
|
Methods in yawn.nn.mlp.smart with parameters of type Pattern | |
---|---|
void |
SmartMultiLayerPerceptron.oneLearningStep(Pattern input,
Pattern output)
|
Pattern |
SmartMultiLayerPerceptron.predict(Pattern input)
|
Uses of Pattern in yawn.optim.genetic |
---|
Methods in yawn.optim.genetic that return Pattern | |
---|---|
Pattern |
GeneticParameterFitter.predict(Pattern input)
|
Methods in yawn.optim.genetic with parameters of type Pattern | |
---|---|
void |
GeneticParameterFitter.oneLearningStep(Pattern input,
Pattern output)
|
Pattern |
GeneticParameterFitter.predict(Pattern input)
|
Uses of Pattern in yawn.util |
---|
Fields in yawn.util declared as Pattern | |
---|---|
Pattern |
InputOutputPattern.input
|
Pattern |
InputOutputPattern.output
|
Methods in yawn.util that return Pattern | |
---|---|
Pattern |
Pattern.add(double operand)
Scalar addition. |
Pattern |
Pattern.add(Pattern operand)
Element-wise addition. |
protected Pattern[] |
DefaultStatisticsFacility.getPredictions(NeuralNetwork net,
InputOutputPattern[] set)
|
Pattern |
Pattern.multiply(double operand)
Scalar multipication. |
static Pattern |
Pattern.parsePattern(java.lang.String str)
Parses a String into a Pattern . |
Pattern |
Pattern.substract(Pattern operand)
|
Methods in yawn.util with parameters of type Pattern | |
---|---|
Pattern |
Pattern.add(Pattern operand)
Element-wise addition. |
protected static void |
ErrorUtils.checkDimensions(Pattern[] desired,
Pattern[] predictions)
|
protected static void |
ErrorUtils.checkDimensions(Pattern[] desired,
Pattern[] predictions)
|
protected void |
Pattern.checkEqualSize(Pattern comp)
Checks if a Pattern has equal size. |
double |
Pattern.dist(Pattern other)
Calculates an Euclidean distance from this Pattern . |
boolean |
Pattern.equals(Pattern other)
|
double |
Pattern.innerProduct(Pattern operand)
Calculates the inner product of two Pattern s. |
double |
DefaultStatisticsFacility.meanSquaredError(InputOutputPattern[] set,
Pattern[] predictions)
|
static double |
ErrorUtils.meanSquaredError(Pattern[] desired,
Pattern[] predictions)
|
static double |
ErrorUtils.meanSquaredError(Pattern[] desired,
Pattern[] predictions)
|
void |
Pattern.setComponents(Pattern orig)
Sets elements to the ones of orig . |
Pattern |
Pattern.substract(Pattern operand)
|
Constructors in yawn.util with parameters of type Pattern | |
---|---|
Pattern(Pattern source)
Creates a Pattern whose elements are copied from
source . |
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |