Uses of Class
yawn.util.Pattern

Packages that use Pattern
yawn.envs   
yawn.envs.delve   
yawn.envs.plaintext   
yawn.envs.synthetic   
yawn.nn   
yawn.nn.appart   
yawn.nn.committee   
yawn.nn.committee.functions   
yawn.nn.fuzzyartmap   
yawn.nn.gasart   
yawn.nn.mlp   
yawn.nn.mlp.smart   
yawn.optim.genetic   
yawn.util   
 

Uses of Pattern in yawn.envs
 

Methods in yawn.envs that return Pattern
abstract  Pattern[] Environment.getTestDatasetInputs(int runNumber)
          Reads a test dataset from the environment.
 

Methods in yawn.envs with parameters of type Pattern
abstract  void Environment.writeResults(Pattern[] results, int runNumber)
           
 

Uses of Pattern in yawn.envs.delve
 

Methods in yawn.envs.delve that return Pattern
 Pattern[] DelveEnvironment.getTestDatasetInputs(int runNumber)
          Reads a test data file from a DELVE directory.
 

Methods in yawn.envs.delve with parameters of type Pattern
 void DelveEnvironment.writeResults(Pattern[] results, int runNumber)
          Writes a DELVE cguess file representing the predictions of a neural network.
 

Uses of Pattern in yawn.envs.plaintext
 

Methods in yawn.envs.plaintext that return Pattern
 Pattern[] PlainTextEnvironment.getTestDatasetInputs(int runNumber)
           
 

Methods in yawn.envs.plaintext with parameters of type Pattern
 void PlainTextEnvironment.writeResults(Pattern[] results, int runNumber)
          Writes the results to a an ascii file.
 

Uses of Pattern in yawn.envs.synthetic
 

Fields in yawn.envs.synthetic declared as Pattern
protected  Pattern CircleInTheSquareEnvironment.center
           
 

Methods in yawn.envs.synthetic that return Pattern
protected  Pattern XOrDataEnvironment.generateRandomInput()
           
protected abstract  Pattern SyntheticDataEnvironment.generateRandomInput()
           
protected  Pattern CircleInTheSquareEnvironment.generateRandomInput()
           
 Pattern[] SyntheticDataEnvironment.getTestDatasetInputs(int runNumber)
           
 Pattern[] SyntheticDataEnvironment.getTestExpectedOutputsSet(int runNumber)
           
protected  Pattern XOrDataEnvironment.synthetizeOutput(Pattern input)
          (non-Javadoc)
protected abstract  Pattern SyntheticDataEnvironment.synthetizeOutput(Pattern input)
           
protected  Pattern CircleInTheSquareEnvironment.synthetizeOutput(Pattern input)
           
 

Methods in yawn.envs.synthetic with parameters of type Pattern
protected  Pattern XOrDataEnvironment.synthetizeOutput(Pattern input)
          (non-Javadoc)
protected abstract  Pattern SyntheticDataEnvironment.synthetizeOutput(Pattern input)
           
protected  Pattern CircleInTheSquareEnvironment.synthetizeOutput(Pattern input)
           
 void SyntheticDataEnvironment.writeResults(Pattern[] results, int runNumber)
           
 

Uses of Pattern in yawn.nn
 

Fields in yawn.nn declared as Pattern
protected  Pattern NeuralNode.input
           
protected  Pattern InputLayer.input
           
 

Methods in yawn.nn that return Pattern
protected  Pattern Layer.getActivations()
           
protected  Pattern InputLayer.getActivations()
           
 Pattern Layer.output()
           
abstract  Pattern NeuralNetwork.predict(Pattern input)
          Computes a network prediction
 

Methods in yawn.nn with parameters of type Pattern
protected abstract  double NeuralNode.activationFunction(Pattern input)
           
abstract  void NeuralNetwork.oneLearningStep(Pattern input, Pattern output)
          Performs one learning iteration.
abstract  Pattern NeuralNetwork.predict(Pattern input)
          Computes a network prediction
 void NeuralNode.setInput(Pattern val)
          sets the current input of the node
 void Layer.setInput(Pattern input)
           
 void InputLayer.setInput(Pattern p)
           
 

Uses of Pattern in yawn.nn.appart
 

Fields in yawn.nn.appart declared as Pattern
protected  Pattern AppArtConfig.initialDeviations
           
protected  Pattern AppArt.initialDeviations
           
protected  Pattern RadialBasisFunctionsNeuralNode.lambda
           
protected  Pattern RadialBasisFunctionsNeuralNode.mu
           
protected  Pattern RecognitionLayer.normalizedActivations
           
protected  Pattern RadialBasisFunctionsNeuralNode.sigma
           
protected  Pattern PredictionNeuralNode.weights
           
 

Methods in yawn.nn.appart that return Pattern
 Pattern AppArtConfig.getInitialDeviations()
           
 Pattern AppArt.getInitialDeviations()
           
 Pattern RadialBasisFunctionsNeuralNode.getLambda()
           
 Pattern RadialBasisFunctionsNeuralNode.getMu()
           
 Pattern RecognitionLayer.getNormalizedActivations()
           
 Pattern RadialBasisFunctionsNeuralNode.getSigma()
           
 Pattern PredictionNeuralNode.getWeights()
           
protected  Pattern AppArt.learnNewCategory(Pattern output)
           
 Pattern AppArt.predict(Pattern input)
           
protected  Pattern AppArt.propagate(Pattern output)
          Propagates the input already already presented to the network (by calling setInput())
 

Methods in yawn.nn.appart with parameters of type Pattern
protected  double RadialBasisFunctionsNeuralNode.activationFunction(Pattern input)
           
protected  double PredictionNeuralNode.activationFunction(Pattern input)
           
protected  double RadialBasisFunctionsNeuralNode.bigG(Pattern input)
           
 void GainControlUnitOnOutput.calculateAbsoluteError(Pattern o, Pattern y)
           
 void GainControlUnitOnOutput.calculateRelativeError(Pattern o, Pattern y)
           
protected  void AppArt.computeError(Pattern prediction, Pattern expected)
           
 void PredictionLayer.learn(Pattern y)
           
protected  void AppArt.learn(Pattern pat)
           
protected  Pattern AppArt.learnNewCategory(Pattern output)
           
 void RadialBasisFunctionsNeuralNode.learnNewClass(Pattern gamma, int n)
          Sets up the node to exactly represents the class specified by the current input.
protected  double RadialBasisFunctionsNeuralNode.netInput(Pattern input)
           
 void AppArt.oneLearningStep(Pattern input, Pattern output)
           
 Pattern AppArt.predict(Pattern input)
           
protected  Pattern AppArt.propagate(Pattern output)
          Propagates the input already already presented to the network (by calling setInput())
 void AppArtConfig.setInitialDeviations(Pattern initialDeviations)
           
 void AppArt.setInitialDeviations(Pattern initialDeviations)
           
 void RecognitionLayer.setInput(Pattern input)
           
 void PredictionLayer.setInput(Pattern input)
           
 void AppArt.setInput(Pattern input)
           
 void RadialBasisFunctionsNeuralNode.setLambda(Pattern lambda)
           
 void RadialBasisFunctionsNeuralNode.setMu(Pattern mu)
           
 void RadialBasisFunctionsNeuralNode.setSigma(Pattern sigma)
           
 void PredictionNeuralNode.setWeights(Pattern weights)
           
 void PredictionLayer.updateWeightsStructure(Pattern y)
           
 

Uses of Pattern in yawn.nn.committee
 

Methods in yawn.nn.committee that return Pattern
 Pattern NetworkCommittee.predict(Pattern input)
           
 

Methods in yawn.nn.committee with parameters of type Pattern
 void NetworkCommittee.oneLearningStep(Pattern input, Pattern output)
          this has no sense in this context, throws an UnsupportedOperationException by default.
 Pattern NetworkCommittee.predict(Pattern input)
           
 

Uses of Pattern in yawn.nn.committee.functions
 

Methods in yawn.nn.committee.functions that return Pattern
 Pattern Popularity.assamble(Pattern[] x)
           
 Pattern CommitteeFunction.assamble(Pattern[] x)
          Builds a committe response from an array of outputs.
 

Methods in yawn.nn.committee.functions with parameters of type Pattern
 Pattern Popularity.assamble(Pattern[] x)
           
 Pattern CommitteeFunction.assamble(Pattern[] x)
          Builds a committe response from an array of outputs.
 

Uses of Pattern in yawn.nn.fuzzyartmap
 

Methods in yawn.nn.fuzzyartmap that return Pattern
protected  Pattern FuzzyArtMap.bThenAActivation(Pattern input, Pattern output)
          Activates ARTb before ARTa, this kind of activation avoids the ``match tracking anomaly'' reported in
 Pattern FuzzyArtMap.deScaleZeroOneOutput(Pattern pat)
           
 Pattern FuzzyArtMap.predict(Pattern input)
           
 Pattern FuzzyArtMap.scaleZeroOneInput(Pattern pat)
           
 

Methods in yawn.nn.fuzzyartmap with parameters of type Pattern
protected  Pattern FuzzyArtMap.bThenAActivation(Pattern input, Pattern output)
          Activates ARTb before ARTa, this kind of activation avoids the ``match tracking anomaly'' reported in
 Pattern FuzzyArtMap.deScaleZeroOneOutput(Pattern pat)
           
 void FuzzyArtMap.oneLearningStep(Pattern input, Pattern output)
           
 Pattern FuzzyArtMap.predict(Pattern input)
           
 Pattern FuzzyArtMap.scaleZeroOneInput(Pattern pat)
           
 

Uses of Pattern in yawn.nn.gasart
 

Fields in yawn.nn.gasart declared as Pattern
protected  Pattern GasRecognitionNode.defaultSigma
           
 

Methods in yawn.nn.gasart that return Pattern
 Pattern GasArt.learnNewCategory(Pattern p)
           
 Pattern GasRecognitionNode.position()
           
 

Methods in yawn.nn.gasart with parameters of type Pattern
protected  double GasRecognitionNode.activationFuntion(Pattern input)
           
 void GasArt.learn(Pattern p)
           
 Pattern GasArt.learnNewCategory(Pattern p)
           
 void GasRecognitionNode.learnNewClass(Pattern gamma, int n)
           
 GasRecognitionNode GasArt.makeFstSndBMUConexion(Pattern p)
           
 

Uses of Pattern in yawn.nn.mlp
 

Fields in yawn.nn.mlp declared as Pattern
protected  Pattern PerceptronNode.momentum
           
protected  Pattern PerceptronNode.weights
           
 

Methods in yawn.nn.mlp that return Pattern
 Pattern MLPLayer.calculateDeltasAsHiddenLayer(Pattern nextLayerDeltas)
           
 Pattern MLPLayer.calculateDeltasAsOutputLayer(Pattern expectedOutputs)
           
 Pattern PerceptronNode.getWeights()
           
 Pattern MultiLayerPerceptron.predict(Pattern input)
           
 

Methods in yawn.nn.mlp with parameters of type Pattern
protected  double PerceptronNode.activationFunction(Pattern input)
           
 void MLPLayer.adapt(Pattern deltas, double learningRate, double momentumRate)
           
 Pattern MLPLayer.calculateDeltasAsHiddenLayer(Pattern nextLayerDeltas)
           
 Pattern MLPLayer.calculateDeltasAsOutputLayer(Pattern expectedOutputs)
           
 double PerceptronNode.calculateHiddenLayerDelta(Pattern nextLayerDeltas, Pattern nextLayerWeights)
          Calculate the deltas using the subsequent layer deltas and the weights emmanent from this node.
 void MultiLayerPerceptron.oneLearningStep(Pattern input, Pattern output)
          Implements a learning iteration as: propagates the input storing the activation of all nodes; sums in errorSum the mean square error of the prediction; calculation of the deltas; backpropagation of errors, and; weights update.
 Pattern MultiLayerPerceptron.predict(Pattern input)
           
 void MLPLayer.setInput(Pattern input)
          Does the `threshold as weight' trick.
 void PerceptronNode.setWeights(Pattern weights)
           
 

Uses of Pattern in yawn.nn.mlp.smart
 

Methods in yawn.nn.mlp.smart that return Pattern
 Pattern SmartMultiLayerPerceptron.predict(Pattern input)
           
 

Methods in yawn.nn.mlp.smart with parameters of type Pattern
 void SmartMultiLayerPerceptron.oneLearningStep(Pattern input, Pattern output)
           
 Pattern SmartMultiLayerPerceptron.predict(Pattern input)
           
 

Uses of Pattern in yawn.optim.genetic
 

Methods in yawn.optim.genetic that return Pattern
 Pattern GeneticParameterFitter.predict(Pattern input)
           
 

Methods in yawn.optim.genetic with parameters of type Pattern
 void GeneticParameterFitter.oneLearningStep(Pattern input, Pattern output)
           
 Pattern GeneticParameterFitter.predict(Pattern input)
           
 

Uses of Pattern in yawn.util
 

Fields in yawn.util declared as Pattern
 Pattern InputOutputPattern.input
           
 Pattern InputOutputPattern.output
           
 

Methods in yawn.util that return Pattern
 Pattern Pattern.add(double operand)
          Scalar addition.
 Pattern Pattern.add(Pattern operand)
          Element-wise addition.
protected  Pattern[] DefaultStatisticsFacility.getPredictions(NeuralNetwork net, InputOutputPattern[] set)
           
 Pattern Pattern.multiply(double operand)
          Scalar multipication.
static Pattern Pattern.parsePattern(java.lang.String str)
          Parses a String into a Pattern.
 Pattern Pattern.substract(Pattern operand)
           
 

Methods in yawn.util with parameters of type Pattern
 Pattern Pattern.add(Pattern operand)
          Element-wise addition.
protected static void ErrorUtils.checkDimensions(Pattern[] desired, Pattern[] predictions)
           
protected static void ErrorUtils.checkDimensions(Pattern[] desired, Pattern[] predictions)
           
protected  void Pattern.checkEqualSize(Pattern comp)
          Checks if a Pattern has equal size.
 double Pattern.dist(Pattern other)
          Calculates an Euclidean distance from this Pattern.
 boolean Pattern.equals(Pattern other)
           
 double Pattern.innerProduct(Pattern operand)
          Calculates the inner product of two Patterns.
 double DefaultStatisticsFacility.meanSquaredError(InputOutputPattern[] set, Pattern[] predictions)
           
static double ErrorUtils.meanSquaredError(Pattern[] desired, Pattern[] predictions)
           
static double ErrorUtils.meanSquaredError(Pattern[] desired, Pattern[] predictions)
           
 void Pattern.setComponents(Pattern orig)
          Sets elements to the ones of orig.
 Pattern Pattern.substract(Pattern operand)
           
 

Constructors in yawn.util with parameters of type Pattern
Pattern(Pattern source)
          Creates a Pattern whose elements are copied from source.
 



Copyright © 2003-2005 GIAA, Universidad Carlos III de Madrid. All Rights Reserved.